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INTRODUCTION

The discovery of chaos in ecological models in the 1970s 
heralded an extensive search for chaos in ecological time 
series that peaked in the 1990s. The theoretical condi-
tions for chaos (i.e. bounded, deterministic and aperiodic 
dynamics that depend sensitively on initial conditions) 
have been extensively studied in ecological models (e.g. 
Hastings & Powell,  1991; Huisman & Weissing,  1999; 
Pearce et al., 2020), and chaos has been experimentally 

demonstrated in protists (Becks et al.,  2005), plankton 
(Benincà et al., 2008) and insects (Desharnais et al., 2001). 
While there had been limited evidence for chaos in natu-
rally occurring populations (Sibly et al., 2007), a recent 
meta- analysis found evidence for chaos in upwards of 
30% of ecological time series examined, with higher 
prevalence among short- lived species including plankton 
(Rogers et al., 2022).

While these studies considered the prevalence of global 
instability (i.e. long- run growth of small perturbations to 
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Abstract
Chaotic dynamics appear to be prevalent in short- lived organisms including 
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sites, we found seasonal patterns of local instability in many species, that short- term 
predictability was related to local instability, and that local instability occurred 
most often in the spring, associated with periods of high growth. Taxonomic 
aggregates were more stable and more predictable than finer groupings. Across sites, 
higher latitude locations had higher Lyapunov exponents and greater seasonality 
in local instability, but only at coarser taxonomic resolution. Overall, these results 
suggest that prediction accuracy, sensitivity to change and management efficacy 
may be greater at certain times of year and that prediction will be more feasible for 
taxonomic aggregates.
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species abundances, an indication chaos), time- varying 
local instability (i.e. short- run growth of small perturba-
tions at a particular point in time) has received less at-
tention. This includes the possibility that globally stable 
(i.e. non- chaotic) time series can exhibit periods of local 
instability. Populations situated at the ‘edge of chaos’ are 
prone to alternating between periods of locally stable 
and unstable dynamics. This alternation means that in 
the near- term, there will be periods when perturbations 
will be dampened, and other periods when they will be 
amplified. Such intermittent instability could arise ei-
ther because of changes in stability as the system moves 
through phase space (i.e. as a result of internal dynamics), 
or as the system is influenced by some external driver. If 
common, intermittent instability would affect ecological 
forecast horizons (Petchey et al., 2015) and present bar-
riers beyond which precise forecasts could not be gener-
ated (Abarbanel, 2013; Cenci & Saavedra, 2019).

Two recent studies have demonstrated intermittent 
instabilities. In a rocky intertidal community in New 
Zealand, near- cyclic changes in substratum occupation 
by barnacles, mussels and algae exhibited periods of 
intermittent instability (Benincà et al., 2015). Similarly, 
the fish community of Maizuru Bay, Japan exhibited 
approximately annual periods of intermittent instabil-
ity (Ushio et al., 2018). To date, however, there has not 
been a systematic evaluation of the conditions under 
which intermittent instability occurs in natural systems. 
Moreover, both of these seminal demonstrations centre 
on communities whose dynamics are dominated by fluxes 
of individuals from outside the system. In the rocky in-
tertidal case, succession is forced by tidally driven losses 
of mussel beds followed by recolonisation by planktonic 
barnacle larvae. In Maizuru Bay, temporal patterns in 
fish abundance are dominated by seasonal migration as 
individuals move into and out of the estuary. As a conse-
quence, it is unclear whether we should expect intermit-
tent instability to appear under more general ecological 
conditions. Specifically, is intermittent instability simply 
the result of migration or dispersal in open systems, or 
is it intrinsic to ecological dynamics more generally? As 
yet, there are no comparative studies on the magnitude 
and frequency of intermittent instabilities.

Aggregated community and ecosystem metrics are 
often less temporally variable than their constituent 
population time series, but this does not guarantee in-
creased dynamical stability. Populations often fluctuate 
asynchronously: declines in some species are offset by in-
creases in others, a phenomenon referred to as portfolio 
effects (Doak et al., 2008; Tilman et al., 1998) or the insur-
ance hypothesis (Yachi & Loreau, 1999). Asynchronous 
fluctuations could arise due to stochasticity, differential 
responses to the environment, successional processes or 
chaos (Dakos et al., 2009; Huisman & Weissing, 1999). 
However, the fact that the aggregate is less variable than 
the constituents does not imply that it is more predict-
able or that dynamical stability has increased. Thus far, 

one study using data from a single marine location found 
that aggregation made phytoplankton time series more 
predictable, at least for some taxonomic groups (Agarwal 
et al., 2021). However, it is unclear how widespread this 
pattern is or whether increased predictability at coarser 
taxonomic resolution corresponds with increased sta-
bility. Theory shows that high- dimensional models with 
many species tend to be unstable (Gross et al.,  2005; 
Ispolatov et al., 2015; Pearce et al., 2020), but ecologists 
often formulate models in terms of species aggregates 
(e.g. total phytoplankton biomass). Whether this is an 
empirically reasonable approach depends on how taxo-
nomic aggregation affects stability and predictability in 
real ecosystems. Exploring the effects of aggregation on 
both stability and predictability could help better under-
stand community dynamics and have implications for 
resource management.

To address these questions, we sought to (1) examine 
systems that are relatively closed, such that abundance 
changes are less dominated by external fluxes relative 
to marine systems, (2) focus on species with short gen-
eration times such that abundance changes reflect popu-
lation dynamics rather than movement and (3) combine 
observations from multiple systems that span a wide 
range of environmental conditions and seasonal forcing. 
Phytoplankton and zooplankton time series from lakes 
(which are relatively closed systems) and marine ecosys-
tems (which are more open systems) are ideal for analy-
sis, as plankton also have short generation times (on the 
order of days to weeks), and many locations around the 
world have been sampled at relatively high frequency for 
extended intervals. Models of plankton dynamics often 
exhibit chaos, particularly when combined with seasonal 
forcing (Doveri et al., 1993; Huisman & Weissing, 1999; 
Moroz et al.,  2016; Popova et al.,  1997; Scheffer,  1991), 
and although a handful of empirical investigations 
have looked for chaos in plankton time series (Ascioti 
et al., 1993; Benincà et al., 2008; Medvinsky et al., 2015; 
Rogers et al.,  2022; Sugihara & May,  1990), none have 
assessed the frequency of intermittent instability or the 
effects of taxonomic resolution.

We assembled monthly plankton time series data 
from 21 globally distributed sites, which included 17 
lakes and 4 marine sites. For a given site, we analysed 
time series at three different levels of taxonomic resolu-
tion (species, functional group and trophic level) to the 
extent that the data resolution allowed. For each time se-
ries, we used time delay embedding (Takens, 1981) to re-
construct Jacobian matrices (Nychka et al., 1992; Rogers 
et al., 2022) at each time point using local linear regres-
sion (S- map, Sugihara, 1994). From these local Jacobians, 
we estimated the effective Lyapunov exponent (LE, an 
indicator of dynamical stability over the whole time se-
ries) and local (monthly) eigenvalues as measures of local 
stability. Extensive simulations demonstrate that this 
approach to LE estimation classifies series (as chaotic 
or not chaotic) with high accuracy (Rogers et al., 2022). 
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We then assessed (1) the prevalence of chaotic dynamics 
and seasonal fluctuations in local stability; (2) the rela-
tionship between local stability, population growth rate, 
population abundance and step- ahead forecast error; (3) 
across- site variation in chaotic dynamics and the sea-
sonality of local stability, including relationships with 
environmental covariates; and (4) how these results are 
affected by the level of taxonomic resolution.

M ETHODS

Data

We compiled data on zooplankton abundance, phyto-
plankton abundance and water temperature from 17 
lakes and 4 marine locations sampled at monthly in-
tervals (Table  S1). If multiple observations were taken 
during a month, these were averaged. Depending on the 
taxonomic resolution of the data available at each site, 
we assembled time series at three different levels of ag-
gregation: species, functional group and trophic level. 
‘Species’- level series were the lowest resolution avail-
able for each taxon, typically species, genus or family. 
Functional group series were generated by adding to-
gether species- level series as appropriate. For lakes, the 
functional groups were typically copepods, large clad-
ocerans, small cladocerans, predators and rotifers. For 
marine sites, which had more taxonomically diverse zoo-
plankton assemblages, functional groups were typically 
herbivores and carnivores. Trophic- level series reflected 
total zooplankton and total phytoplankton abundance 
at each site. Total zooplankton was obtained by add-
ing together functional group- level series as appropri-
ate, excluding rotifers, as they were not enumerated in 
most data sets. As a proxy for total phytoplankton, we 
used chlorophyll- a (chl- a) concentration (μg L−1) or phy-
toplankton cell density if chl- a data were unavailable. 
Specific functional group and trophic- level aggregates 
used for each site are given in Table S1. For all zooplank-
ton series, we used density data unless only biomass data 
were available. If measurements of chl- a and tempera-
ture were taken at multiple depths, we averaged meas-
urements taken at depths ≤2 m.

After assembling all time series, we retained for 
analysis only those for which <60% of non- missing ob-
servations were zeros, the longest string of consecutive 
non- missing values was at least 24 and the effective sam-
ple size was at least 40 for an embedding dimension of 2 
and time delay of 1. Effective sample size was defined as 
the number of valid coordinate delay vectors obtained 
after accounting for missing data (see next section for 
definitions of embedding dimension, time delay, and 
delay coordinate vector). We also included only series 
which had at least 4 local stability estimates in each of at 
least 10 months of the year, so as to ensure that seasonal 
dynamics were adequately represented. This resulted in 

154 species level, 48 functional group level and 41 trophic 
level time series from 21 sites.

Prior to analysis, all time series were rescaled to unit 
variance by dividing by the standard deviation. To allow 
for log transformations, all time series containing zeros 
were rescaled after adding a constant (1 if all values were 
integers, the minimum non- zero value if the series con-
tained non- integers or the minimum non- zero value was 
>100). Leaving the zeros intact and using only model 
forms that did not require log transformations produced 
similar results.

Analysis

We computed metrics of global and local stability from 
reconstructed state- dependent Jacobian matrices. 
Jacobian matrices were reconstructed by fitting a model 
with the form:

xt = f
(
xt−τ, xt−2� , … , xt−Eτ

)

where {xt−τ, xt−2τ, …, xt−Eτ} is the ‘delay coordinate vec-
tor’ for time t. For each time series, we fit f using local 
linear regression (S- map, Sugihara,  1994), which has 
been used in prior studies to estimate time- varying sta-
bility (Ushio et al., 2018). We specifically used the pro-
cedure detailed in Rogers et al.  (2022), which has been 
optimised for chaos detection. This method uses leave- 
one- out cross- validation to select the optimal embedding 
dimension (E), time delay (τ) and local weighting param-
eter (θ) for each time series. The parameter θ determines 
the local weighting of points: a model with θ = 0 is linear, 
and models with higher values are more non- linear. For 
this analysis, we fit models with E values from 1 to 6, τ 
values from 1 to 12, and 12 values of θ (0, 0.1, 0.3, 0.5, 
0.75, 1, 1.5, 2, 3, 4, 6 and 8) in all combinations. From 
the set of best performing models (those with leave- one- 
out R2 values for abundance within 0.01 of the highest 
obtained), we selected the model with the lowest τ, θ and 
E (in that order). This procedure was repeated for three 
different model forms (first difference xt − xt − τ as a func-
tion of abundance, population growth rate ln(xt /xt − τ) as 
a function of abundance, and population growth rate as 
a function of log abundance), and the form with the high-
est R2 was selected as the final model. Jacobian matrices, 
J(xt), were then constructed from the local regression co-
efficients and were formulated (for comparison across 
series) in units of scaled abundance. Here, J(xt) is an E x 
E matrix whose top row is J1,j = �f ∕�xt−j for j = 1, …, E, 
whose first subdiagonal is Jj, j − 1 = 1 for j = 2, …, E, and 
all other elements are 0.

As a measure of global stability, we computed the 
Lyapunov exponent (LE). Positive LEs indicate long- 
term sensitivity to initial conditions and global instabil-
ity (i.e. chaos). The LE is computed by multiplying 
sequential Jacobian matrices and taking the log absolute 
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value of the dominant eigenvalue, Λ1, of this product. 
The LE is formally defined as time series length T → ∞ , 
but for finite time series, the effective LE is calculated 
over all available data.

In the case of missing data, we computed the LE over the 
longest consecutive sequence of non- missing values. We 
obtained LEs and constructed confidence intervals as de-
scribed in Rogers et al. (2022). Series with LE significantly 
>0.01 were classified as chaotic.

Local stability can be computed in several different 
ways from the individual Jacobian matrices, J(xt). The 
largest singular value of the Jacobian (eigenvalue of 
J(xt)J(xt)

T) quantifies the maximum growth rate of a 
local perturbation over the next timestep (Neubert & 
Caswell,  1997). However, singular values are not scale 
invariant and are sensitive to the use of delay coordi-
nates. Thus, we opted to use the log absolute value of 
the dominant eigenvalue of J(xt) (hereafter, the ‘local ei-
genvalue’) as our measure of local instability (values >0 
indicating instability). We evaluated the local eigenvalue 
at each point to test for intermittent instability. We note 
that evaluated over a longer time interval, the eigenvalue 
would estimate the local LE, used to indicate ‘intermit-
tent chaos’ in physical systems (Abarbanel et al., 1992). 
Although the dominant eigenvalue reflects asymptotic 
stability as opposed to perturbation growth after a sin-
gle timestep (which may include transient expansion), 
eigenvalues are invariant to similarity transformations 
(i.e. J and SJS−1 have the same eigenvalues, where S is 
an arbitrary non- singular matrix, such as the transfor-
mation between native and delay coordinates), so are 
consequently relatively insensitive to the use of delay 
coordinates and present a conservative lower bound on 
the true step- ahead perturbation growth rate for the sys-
tem. As a less conservative measure of local short- term 
perturbation growth, we also computed the log variance 
expansion ratio (VER) given by the trace of J(xt)J(xt)

T. In 
an idealised setting, the VER measures the ratio of total 
variance at the next timestep to the total variance at the 
current timestep. This quantity is analogous to the ‘vol-
ume contraction rate’, which Cenci and Saavedra (2019) 
used to quantify local structural stability.

To examine seasonality in local eigenvalues, stan-
dardised power spectra were computed for the local ei-
genvalue time series using penalised (ridge) regression 
onto sine and cosine basis functions with frequencies 
2πk/T, where k  =  1, 2, … T/2 and T is the time series 
length. This was done in lieu of a discrete Fourier trans-
form because all time series contained missing values. 
Local eigenvalue time series were rescaled to mean 0 and 
unit variance prior to decomposition, and the penalty 
was set to 0.01. Power at each frequency was calculated 

from the sine and cosine coefficients. We separately eval-
uated the power for period 12 by regression onto basis 
functions, since this exact frequency was not always in-
cluded in the basis set. Series were classified as ‘seasonal’ 
if the period with maximum power was between 11.5 and 
12.5 months. The magnitude of seasonality for local ei-
genvalues was computed as the difference between the 
minimum and maximum monthly median eigenvalues. 
Relative eigenvalue seasonality was calculated similarly, 
but after scaling the local eigenvalue time series to unit 
variance.

We next examined the relationship between local 
stability and time of year, abundance, growth rate and 
predictability for all series with at least one positive 
local eigenvalue and some seasonality in local eigen-
values (difference between minimum and maximum 
monthly medians >0.25). We identified the month with 
greatest median local instability across all years. We 
also computed the Pearson cross- correlation between 
local eigenvalues, growth rate (ln(xt + 1/xt)) and log scaled 
abundance, and we identified the lag with the maximum 
correlation. We examined the relationship between step- 
ahead leave- one- out forecast error (log absolute value of 
the prediction residual) and either the local eigenvalue 
or VER across all time series for each level of aggrega-
tion. At the site level, we examined how median variabil-
ity (coefficient of variation, CV) and predictability (R2) 
varied with level of aggregation.

Lastly, we evaluated the relationship between site- 
level stability metrics (LE, proportion- positive local ei-
genvalues, local eigenvalue seasonality and relative local 
eigenvalue seasonality) and two environmental covari-
ates: mean temperature (which was highly correlated 
with latitude, photoperiod range and productivity as 
measured by mean log chl- a; Pearson r = −0.95, −0.90, 
0.66 respectively) and temperature range (difference be-
tween minimum and maximum monthly means, which 
was not strongly correlated with mean temperature, 
Pearson r = −0.06, as it is additionally affected by sys-
tem size, depth and stratification). We also examined 
whether these relationships depended on the level of ag-
gregation. We used average values for each site, at each 
level of aggregation, and used additive linear models. We 
also fit a model using individual data points with site as 
a random effect.

Analyses were performed in R version 3.6.3 (R Core 
Team, 2019). The S- map models were fit using the pack-
age ‘rEDM’ version 0.7.4 (Ye et al., 2018).

RESU LTS

Chaotic dynamics (LE significantly >0) were found in 
many time series, particularly at finer taxonomic reso-
lution (Figure  1). The proportion of time series classi-
fied as chaotic was 52% for species (80 of 154 total time 
series), 42% for functional groups (20 of 48) and 7% for 
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trophic levels (3 of 41). Similar results were seen within 
individual sites that had all three resolutions represented 
(Figure  S1). It was also common for series to show in-
termittently unstable dynamics (positive local eigen-
values) when the dynamics were globally stable (58% of 
non- chaotic series for species, 46% for functional groups 
and 53% for trophic levels; Figure 1). Variability in local 
eigenvalues was seasonal (displayed a dominant annual 
periodicity) for many time series, particularly at finer tax-
onomic resolutions (56% for species, 50% for functional 
groups and 24% for trophic levels; Figure 1). Seasonality 
was more common in stable series with intermittent local 
instability than in series that were always stable, and at 
the species and functional group resolutions, seasonality 
was present in the majority of chaotic series (Figure 1).

The proportion of local eigenvalues that were positive 
also decreased at coarser levels of taxonomic resolution. 
Across time series, the average proportion of eigenval-
ues that were positive was 50%, 39% and 21% for spe-
cies, functional groups and trophic levels respectively. 
Of series that were not chaotic (LE ≤0), 54% had at least 
one local eigenvalue that was positive, and 38% had at 
least a quarter of local eigenvalues that were positive 
(Figure 2b). For chaotic series, 49– 96% of local eigenval-
ues were positive.

The magnitude of seasonality for local eigenvalues 
was typically low for non- chaotic series, although sea-
sonality could be high when a large percentage of the ei-
genvalues were positive (Figure 2). For chaotic series, the 
magnitude of seasonality ranged from very low to very 
high (Figure 2). Time series displayed greater seasonality 
at finer taxonomic resolution, and these patterns were 
similar for both lake and marine sites. Representative 
time series of abundance and local eigenvalues, along 
with power spectra for local eigenvalues are shown in 
Figure  3, showing a range of different behaviour and 
seasonality. For example, series 1 is chaotic (LE>0) with 
local eigenvalues that are highly seasonal and alternate 

between positive and negative values. In contrast, series 
6 is non- chaotic with local eigenvalues that are always 
negative and show very little seasonality.

Across all species- level series with at least one positive 
local eigenvalue and some seasonality in local eigenvalues 
(>0.25), the month with greatest median local instability oc-
curred most often in spring (Figure S2), although there was 
variation among series. For functional group and trophic- 
level series, the month with greatest instability also oc-
curred most often in spring for marine sites, but was more 
variable for lakes. Based on the Pearson cross- correlation 
function, the month with greatest local instability tended 
to coincide with, or just follow, the month with maximum 
growth rate, and to precede the month with maximum 
abundance (Figure S3). Local eigenvalues did not show a 
strong relationship with step- ahead predictability, how-
ever, a larger VER was associated with lower step- ahead 
predictability (greater step- ahead forecast error; Figure 4). 
This association was stronger, and the spread of VER val-
ues larger, at the species level than at coarser taxonomic res-
olutions. At the site level, time series variability decreased 
(Figure 5a) and predictability increased (Figure 5b) as the 
level of taxonomic aggregation increased.

Across sites, the proportion- positive local eigenvalues 
and local eigenvalue seasonality did not show significant 
relationships with any of the covariates (Figure  6a,b; 
Table  S2). Relative local eigenvalue seasonality was 
higher at lower mean temperature at the functional group 
level (p = 0.054) and trophic level (p = 0.007, Figure 6c,d; 
Table  S2). The LE was higher at lower mean tempera-
tures at the functional group level (p = 0.004) and trophic 
level (p = 0.087), and lower temperature range at the tro-
phic level (p = 0.018, Figure 6e,f; Table S2). Similar re-
sults were obtained using individual data points with site 
as a random effect, except the relationship between mean 
temperature and the LE at the trophic level and relative 
seasonality at the function group level were statistically 
significant (p = 0.047, 0.011 respectively).

F I G U R E  1  Mosaic plot indicating stability and seasonality of time series at three levels of taxonomic resolution. Axes show the relative 
frequency of each category. Series were classified as chaotic if LE >0. Series that were not chaotic but had at least one local eigenvalue >0 are 
classified as ‘not chaotic with local instability’. Within each stability category, a series was considered to have a dominant seasonal period if the 
period of the local eigenvalue Fourier spectrum with maximum power was between 11.5 and 12.5 months.
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DISCUSSION

Our results demonstrate that intermittent instabilities are 
common in natural plankton systems, both in relatively 
closed (lake) and relatively open (marine) ecosystems. 
Time series displayed a wide range of dynamical behav-
iour (e.g. chaotic and intermittently unstable, not chaotic 
and intermittently unstable, not chaotic and always stable). 
Chaos was also prevalent, supporting other results that 
chaos is widespread in plankton (Medvinsky et al., 2015; 
Rogers et al., 2022). However, the most novel finding was 
that, even among series not classified as chaotic, local ei-
genvalues fluctuated above and below 0 with an annual/
semi- annual periodicity, indicating that intermittent insta-
bilities are both common and strongly seasonal.

Chaos was most prevalent at the species level, and 
less common as the level of interspecies aggregation 
increased. Asynchronous, chaotic fluctuations in spe-
cies abundances due to non- equilibrial (Huisman & 
Weissing,  1999) or near- neutral (Pearce et al.,  2020; 
Rodríguez- Sánchez et al.,  2020) dynamics can allow 
for the coexistence of more species than the number of 
resources, maintaining a higher level of diversity than 
would otherwise be possible. In this context, our results 
are consistent with the hypothesis that chaos may resolve 
the paradox of the plankton (Hutchinson, 1961; Scheffer 

et al.,  2003), though there are other, non- exclusive hy-
potheses. In nutrient– phytoplankton– zooplankton 
(NPZ) models, chaos is sometimes seen as problem-
atic, and models are often altered (by addition of clo-
sure terms) so that the dynamics are stable (Caswell & 
Neubert, 1998). Our results suggest that while this may 
be a reasonable thing to do for plankton aggregates (e.g. 
total chlorophyll), such ad hoc stabilisation of models 
may be misguided for models of particular species or 
functional groups.

Variability and stability are often used interchange-
ably when examining population dynamics. However, if 
species fluctuate independently, data aggregation would 
decrease variability as a result of statistical averaging, 
but this would not necessarily increase stability or pre-
dictability. Here, data aggregation decreased variability 
and increased predictability, which is more consistent 
with species fluctuating out of phase due to complemen-
tarity (compensatory dynamics, response diversity, e.g. 
Jochimsen et al., 2013). Observed changes in predictabil-
ity were related to changes in global stability (aggregates 
were less chaotic) and local stability (aggregates had less 
variable VER). Along these lines, non- seasonal plank-
ton competition models can exhibit chaotic succession 
of many different species, but near constant aggregate 
biomass (Huisman & Weissing, 1999). In models with a 

F I G U R E  2  Seasonality of local eigenvalues (difference between minimum and maximum monthly medians) for each level of taxonomic 
resolution, plotted against (a) Lyapunov exponent (LE), colour indicating proportion- positive local eigenvalues, and (b) proportion- positive 
local eigenvalues, colour indicating chaos classification. Circled points are representative time series displayed in Figure 3.
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seasonal environment, aggregate dynamics can show sea-
sonal blooms, while species- level chaos drives variabil-
ity in the magnitude and composition of those blooms 
(Dakos et al., 2009), making species abundance less pre-
dictable than aggregate biomass (Agarwal et al.,  2021; 
Cottingham et al., 1998; Tilman, 1995). Indeed, overall 
biomass behaves relatively predictably in lake ecosys-
tems (Sommer et al., 1986).

The LE for many time series (including aggregates) 
was often very close to zero, and local stability often fluc-
tuated seasonally between stable and unstable values, as 
seen in previous studies (Benincà et al., 2015; Ellner & 
Turchin, 1995; Turchin & Ellner, 2000; Ushio et al., 2018). 
The time of year with greatest instability tended to be 
during spring. Our results thus imply seasonal variation 
in forecastability (Abarbanel et al., 1992), with spring and 
summer (the time of blooms in many plankton species) 
being least predictable. This is consistent with findings 
in plankton models (Popova et al., 1997) and studies of 

Daphnia (Hovenkamp, 1990). Supporting this, the VER 
was related to short- term predictability, which was most 
pronounced in the species- level time series.

Whether seasonal instability results from ‘intrinsic’ 
variation in dynamics (e.g. species interactions) and/
or variation in an external driver is unclear. For most 
species, instability was associated with periods of high 
(exponential) growth, which could result from seasonal 
changes in either environmental (e.g. light, nutrient) or 
biological (e.g. prey availability, competition, predation) 
conditions (Rogers et al., 2020). While useful for identi-
fying intermittent instability, time delay embedding does 
not allow us to differentiate between these because it im-
plicitly includes the driver as part of the ‘system’, though 
this can potentially be disentangled with additional data. 
The role of noise in inducing chaos or intermittent insta-
bility (e.g. Dwyer et al., 2004) is also difficult to evaluate 
using these methods. The source of intermittent instabil-
ity is thus an interesting avenue for future work.

F I G U R E  3  Representative time series. (a) Log- scaled abundance, lines connecting sequential values from the same year. (b) LE and local 
eigenvalues by month, lines connecting sequential values from the same year. LE values (top to bottom) are 0.18, 0.091, −0.0024, −0.26, 0.077 
and −0.57. (c) Standardised power spectra for local eigenvalues. Vertical grey lines are frequencies 12−1 and 6−1. Numbers in the upper right of (c) 
correspond to the points in Figure 2, and are (1) Port Erin Bay, Paracalanus parvus; (2) Port Erin Bay, Biddulphia mobiliensis; (3) Lake Müggelsee, 
Leptodora kindtii; (4) Loch Leven Eudiaptomus gracilis; (5) Narragansett Bay, Acartia tonsa; and (6) Lake Geneva, Cyclops prealpinus.

1 2 3 4 5 6 7 8 9 10 11 12

−9

−6

−3

0

−8

−4

0

−4

−2

0

2

−4

−2

0

2

−7.5

−5.0

−2.5

0.0

−2

0

2

Month

Lo
g 

Sc
al

ed
 A

bu
nd

an
ce

(a)

LE 1 2 3 4 5 6 7 8 9 10 11 12

−2

0

2

4

−2

0

2

4

−2

0

2

4

−2

0

2

4

−2

0

2

4

−2

0

2

4

   Month

Ei
ge

nv
al

ue

(b)
1

2

3

4

5

6

0.0 0.1 0.2 0.3 0.4 0.5

0.0

0.3

0.6

0.9

1.2

0.0

0.3

0.6

0.9

1.2

0.0

0.3

0.6

0.9

1.2

0.0

0.3

0.6

0.9

1.2

0.0

0.3

0.6

0.9

1.2

0.0

0.3

0.6

0.9

1.2

Frequency

Po
w

er

(c)



   | 477ROGERS et al.

Cross- site patterns in stability only emerged at coarser 
levels of taxonomic aggregation. Sites had higher LEs, on 
average, at higher latitudes, lower mean temperature and 
lower productivity. This is consistent with many models 
that found seasonality increases the probability of chaos 
and intermittently unstable dynamics (Dakos et al., 2009; 
Heilmann et al., 2016; Kot & Schaffer, 1984). However, 
the theoretical relationship between global stability and 
the amplitude of seasonality is inconsistent among stud-
ies: Steffen et al. (1997) found that the LE was sensitive 
to the amplitude of periodic forcing, but the relationship 
was complex, while Dakos et al. (2009) found no relation-
ship. The abruptness of seasonal forcing also appears to 
affect dynamical stability in models (Sauve et al., 2020). 
We found that temperature range did not appear to be 
related to overall stability, although photoperiod range 
(correlated with latitude and mean temperature) could 
potentially be related. The effect of productivity is also 
difficult to parse since it covaries with other factors. 
Simulations have found chaos to be most prevalent 
at intermediate productivity (Dakos et al.,  2009), and 
community stability (variability) is known to be influ-
enced by nutrients (Lewandowska et al.,  2016; Ptacnik 

et al., 2008) and temperature (Paerl & Huisman, 2008). 
However, there have been few experimental studies on 
how environmental conditions affect dynamical stabili-
ty— an important area for future research.

Although a first hypothesis would be that seasonality 
in local stability is driven by environmental seasonality, 
we did not observe a simple relationship between these 
quantities. However, we did see that relative seasonal-
ity in local stability increased with latitude (lower mean 
temperature, lower productivity). In other words, higher 
latitude sites did not necessarily display greater ampli-
tude fluctuations in local stability, but the variation in 
local stability that they did display was more seasonal. 
Again, this pattern was most apparent at coarser levels 
of data aggregation. Relative seasonality did not show a 
relationship with temperature range, which might mean 
that photoperiod range is a more important seasonal 
driver.

Chaos and intermittent instability present challenges for 
management in terms of establishing causal relationships, 
making forecasts and devising interventions or controls to 
achieve desired outcomes. From an empirical standpoint, 
establishing cause– effect relationships in chaotic systems 

F I G U R E  4  Step- ahead residual (log absolute value) versus local instability (as measured by log variance expansion ratio [VER]) for each 
level of taxonomic resolution, colour indicating different sites. Only results from series with proportion- positive local eigenvalues >0 and local 
eigenvalue seasonality (difference between minimum and maximum monthly medians) >0.25 are shown. Regression lines shown are fit to all 
data.
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F I G U R E  5  Variability and predictability of time series at different levels of taxonomic aggregation. Median coefficient of variation (CV) 
for abundance (a) and R2 for abundance (b) at different levels of taxonomic resolution. Lines connect values from the same site.
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requires use of non- linear approaches (Sugihara,  1994), 
and because of sensitivity to small differences in initial 
conditions, attempts to attribute intrinsically chaotic fluc-
tuations (e.g. spring bloom composition and magnitude) 
purely to environmental drivers may be futile. At the same 
time, attributing all unexplained variation to noise is a 
missed opportunity; Non- linear forecasting methods suit-
able for chaotic systems can generate more accurate short- 
term predictions than models assuming stable dynamics 
plus noise (e.g. Perretti & Munch, 2012).

For instance, harmful algal blooms may be highly 
sensitive to initial conditions. This can thwart tradi-
tional control efforts, and systems may respond to 

perturbations in unintended ways. However, a small 
perturbation during, or just prior to, an unstable period 
would impact the system more than the same perturba-
tion during a stable period. Hence, there may be an op-
timal time to apply control measures to prevent an algal 
bloom (Balaji- Prasath et al., 2022). State- dependent tim-
ing of management action was effective in controlling 
chaotic laboratory populations (Desharnais et al., 2001), 
and in preventing population outbreaks and crashes in 
chaotic population models (Hilker & Westerhoff, 2007). 
Whether this can be successfully implemented in a 
natural system will depend on whether we can accu-
rately reconstruct the dynamics and identify desirable 

F I G U R E  6  Across site patterns in seasonal instability for each level of taxonomic resolution. (a, b) Seasonality of local eigenvalues 
(difference between minimum and maximum monthly medians) plotted against site- level mean temperature and temperature range. (c, d) 
Relative seasonality of local eigenvalues (difference between minimum and maximum monthly medians, after scaling eigenvalues to unit 
variance) plotted against site- level mean temperature and temperature range. (e, f) Lyapunov exponent (LE) plotted against site- level mean 
temperature and temperature range. Lines and bands are linear regressions and 95% confidence intervals. Coloured points are site means, grey 
points are individual time series (not used in analysis, but plotted to show within- site variation). Circles are lakes, triangles are marine sites.
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perturbations. Empirical dynamic models can be com-
bined with dynamic programming to obtain useful con-
trol policies in chaotic systems (Brias & Munch, 2021), 
and the extension to systems with intermittent instabili-
ties is an important area of future research. Our results 
also suggest that management of species groups may be 
more robust than single- species approaches. This is con-
sistent with recent suggestions that marine ecosystem 
management would benefit from ‘balanced harvesting’ 
(Zhou et al., 2010, 2019) albeit for fundamentally differ-
ent reasons.

In terms of forecasting, accurate short- term pre-
dictions are likely more feasible for aggregated data. 
Predictions are also more likely to be feasible for win-
ter and fall, when dynamics are most locally stable, 
though non- linear forecasting methods may improve 
short- term predictions during more unstable periods. 
Coarse- grained (climatological) predictions on an 
annual time scale are likely feasible as well, largely 
because of seasonal entrainment— for example, abun-
dance will go up in spring and down in fall, though 
exactly how much is harder to say. Changes in climate, 
if they occur at unstable times of year, may also have 
outsized impacts on plankton dynamics. For exam-
ple, climate change has led to warmer spring water 
temperatures, earlier spring ice- off and earlier onset 
of stratification (Woolway et al.,  2020)— changes 
that may influence plankton dynamics more than 
environmental changes in other seasons (Gerten & 
Adrian, 2002; He et al., 2020).

There have been numerous calls to make ecol-
ogy a more predictive science (Dietze,  2017; Mouquet 
et al., 2015), and this includes acknowledging that pre-
dictions may be more feasible during some time periods 
than others, and that predictability may vary with taxo-
nomic resolution. The efficacy of management interven-
tions may also vary temporally. Quantification of global 
and local instability can aid forecasting efforts in com-
plex natural ecosystems and the approaches best used at 
different scales.
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